IPS e.max Lithium Disilicate Durability

Mouth Motion Fatigue and Durability Study

Petra C. Guess, Ricardo Zavanelli, Nelson Silva and Van P Thompson, NYU

Synopsis:

IPS e.max CAD lithium disilicate was more robust than veneered zirconia in mouth motion fatigue and did not show failure up to 1000 N loads with one million cycles.

Executive Summary:

- Porcelain veneered zirconia crowns and monolithic lithium disilicate crowns were tested.
- Mouth-motion-step-stress-fatigue was used to examine reliability and failure modes.
- Failure was considered to be chip-off fractures of veneering ceramic or fracture through the crown.
- Three step-stress profiles were used up to failure or up to 900 N and 180k cycles after which a staircase fatigue method was implemented to a load at which 50% of specimens could be expected to survive 1 million cycles.
- Veneered zirconia crowns resulted in limited reliability - approximately 90% of specimens would fail from veneer chip-off fracture by 100k cycles at 350 N. These results are similar to previous findings for other veneered zirconia systems (LAVA, Cercon/Vita) tested using this methodology (Coelho PG, Silva NR, Bonfante EA, Guess PC, Rekow ED, Thompson VP. Fatigue testing of two porcelain-zirconia all-ceramic crown systems. Dent Mater. 2009 Apr 21. [Epub ahead of print] (50% failure at 200 N for 50k cycles for both veneered zirconia systems.)

- Approximately 90% veneered zirconia specimens failed by 350 N independent of the number of cycles.
- The e.max CAD lithium disilicate specimens survived ratio fatigue of 1 million cycles at loads of 1000 N. There appears to be a threshold for damage/fracture for the lithium disilicate in the range of 1100-1200 N.